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ELECTRONIC WAVE FUNCTIONS
VIII. A CALCULATION OF THE GROUND STATES Na*, Ne AND F-

By M. J. M. BERNAL, University College, London
AND S. F. BOYS, Theoretical Chemistry Department, University of Cambridge
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The wave functions and energies of the ground states of Nat, Ne and F~ have been calculated
using the variational method applied to a linear combination of Slater determinants. The wave
functions are probably more accurate than any others previously reported for these ions. Some
innovations in the method of calculation have been examined and have provided interesting
empirical experience. The expansions of the relevant Schrédinger matrix elements are derived.
This is the first time that a convergent method of calculation has been applied to systems of such
complexity.

1. INTRODUCTION

In this part the calculation of wave functions for three ions, in states which approximate to
that conventionally described as 152252246, is described. The method used, which has been
applied to beryllium in a previous paper of this series and for which an extensive scheme

/ |\
A B

— for the evaluation of Schrédinger integrals has been developed in preceding parts, is the

§ S variational method applied to a linear combination of Slater determinants. The aim was
~ both to obtain useful data on the structure of these ions and to find the most practical ways
5 practical way

=~ of applying the general theory to complex atoms. Three reasons were responsible for the

O articular choice of ions. First, they occur in the free vapour, liquid and solid states, and

O p 1€y P q )

— o there is strong reason for believing that for these ions the wave functions for the latter states

will differ only slightly from that for the former states. Thus the free-state wave functions
could be used as approximations to the wave functions for the ions in the liquid or solid
state, or as a first approximation in a more accurate calculation of these. Secondly, these
ions were sufficiently complicated that the calculation of their wave functions would neces-
sitate the most general theory and methods throughout. Thirdly, a previous calculation
by Fock & Petraschen (1934) for Na* on the Hartree-Fock basis, for which the energy was
given, was available. The results of the calculations have demonstrated the practicability
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140 - M. J. M. BERNAL AND 8. F. BOYS ON

of the application of the method to complex atoms, and provided a considerable amount of
empirical knowledge on the relative efficiency of different types of functions for improving
the accuracy of wave functions for many-electron atoms.

2. NOTATION AND NOMENCLATURE

Relativistic corrections will be neglected in the present calculations which will be based
on the Schrédinger Hamiltonian, which with its components as for atoms will be denoted by
H=3K—23 Vit I My =—33Vi—=Z3 1)+ Z (1fry), (1)
i . i i>j i i>j
where corresponding terms are to be identified.

When a linear combination of co-detors X ¥,®, is said to approximate to a stationary
r

state, or wave function, of H according to the variational method, this will imply that
zHrsYs_"EYrZO’ (2)
s

where H,, = (@, | H |®,) and E is a constant called the energy of the approximation.

The term ‘connected sets of eigangs’ will be used to designate sets of functions which are
simultaneously eigenfunctions of operators L2 and L,, or $2? and ,, with the usual phase
conventions as specified in part IV. Electronic functions will consist of doubly-connected
sets of eigangs, such as A(m, «), where m is the eigenvalue of L, and « of S,. The notation 65
will be used as previously to denote a double-vector coupling such as

ABOESMU = 5" A(m,u) B(M—m, U—u) X(L, M, L,, Ly, m) X(S, U, S, Sz, %), (3)

where the X coefficients were effectively defined to make the resulting functions connected
sets of eigangs of the operators L, + L, and S, +S,. Particular 25 operators will be denoted
by the modified spectroscopic notations S, S3, ..., P1, P2, etc., where S, P, D, ..., are written
respectively for L = 0, 1,2, ..., and the suffix denotes the value of 25-+1. It has been found
extremely convenient to place the suffix after the letter instead of before as in the usual
spectroscopic notation, since then all the complicated vector-coupled functions can be
written without ambiguity when all brackets are omitted.

The @, are constructed by the vector coupling of connected sets of eigangs, each set
depending only on a single set of variables of the type x;, ¥,, z;, v;, denoted by ¢. The notation
sA,sB, pA, ..., will be used to denote such elementary sets where the first letter signifies the
L value by the spectroscopic code and § = 4. Such pairs as s4 denote single sets and are
used for particular sets of numerical functions.

In some of the present calculations the elementary eigangs s4, sB and pA4 were constructed
so that they corresponded approximately to the orbitals conventionally described as
s, 25 and 2p respectively. This was purely a matter of convenience, being in no way
theoretically necessary (see part II, §7).

What has been called the serial convention will be used so that a function known to
depend on ¢ variables, but written without these variables, will be understood to have the
arguments #,, fy, 43, ..., reading from left to right.

The terminal operator w will be used to denote just those partial antisymmetry operators
> 0,P, required to make the function on which they operate completely antisymmetric.
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In accordance with these conventions the @, will be denoted by such symbols as
sA28' sBsCS! pA5S! w, ' (4)

where reference must be made to part V for the general definition of the particular linear
combinations of vector-coupled functions denoted by s42S! and pA".
In the expansion of the integrals H,, it is only necessary to consider the type of integral

[4* B|C* D]* =J dry d"zz*("l) P(”l) C*(ry) D(ry) {ry, rat%s (5)

where {ri, 7o} =2k~ for ry>r,
=rE*2[ri-1 for r;>r,,

where A(r), etc., denote the radial variation of the respective sets of functions 4, B, etc.
The coefficients of the other integrals are very few and follow trivially from these. The
actual functions used in all the present calculations have real radial functions so that
A* = 4. In accordance with this the above integrals will be written [4B | CD]%, but on the
isolated occasions when distinction must be made the first functions in each enclosure will
be referred to as 4* and C*.

Two combinations of these integrals related to a given H,, were defined and called in-
variants in part VI, which must be consulted for these and the related notations. The
invariant of (®, | H|®,) will be denoted by (&, |inv |®,), and the variant by (P, | var | D,).
The coeflicient of the invariant in (®, | H |®,), when this is expressed as the sum of invariant
and variant quantities, will be denoted by C(®,,®;).

3. DERIVATION OF THE SCHRODINGER INTEGRAL FORMULAS

The most important stage of a variational calculation using antisymmetric vector-
coupled functions is the expression of the Schrodinger matrix elements between pairs of
these functions as linear combinations of one- and two-electron integrals of the types
(A|K—ZV|B) and [AB | CD]*. The formulas for the latter integrals are relatively simple
and have been given in part II. To obtain the linear coefficients of these expressions use
will be made of the integral formulas derived in part VII, which correspond roughly to
component parts of those required here. The labour of integral evaluation is greatly reduced
by using five theorems, which will be established below. The theorems follow from the
general theory but are more of the nature of summaries of processes which would be set
out repeatedly for different integrals, both here and in the future, if they were not set out
once completely explicitly. Although they might be guessed from particular cases, their
proofs in the general case are not always easy.

Some of the theorems (those concerning the formulas for classes of specially related
integrals which occur in problems such as the present one) make it possible to obtain the
formulas for all members of a class by trivial modifications of the formula for a single
member. The labour saved by using these theorems is considerable. In the present calcula-
tions the formulas for about one-third of the integrals required may be obtained by their
use.
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142 M. J. M. BERNAL AND S. F. BOYS ON

The theorems will be established first, and then some particular integrals will be con-
sidered successively. Any required integral is either a member of these, or can be trivially
derived from one of these by theorems given here or previously, or is zero.

THEOREM 1. If A and 4’ denote two similar connected sets of co-detors and B and B’
another such pair with all their elementary functions orthogonal to those of 4 and 4’, then

(4AB0%w | H| A'B'6%w) = C,Cg(invariant) + variant terms, (6)

where C,; and Cj are the invariant coefficients of the pairs 4, 4" and B, B’ respectively.
Proof. For simplicity and clarity the M and U values of the functions 4(M, U), ABH*SMU,

etc., will be omitted, since all the integrals concerned will follow the usual behaviour of

vanishing for two unequal M or U values, and of being independent of the M and U values.

The proof will be performed for a particular type of invariant operator 3 G;; (see theorem
i

20, part VI) with G;; = J;J;, where J, is one of the simpler types of invariant operator such
as the kinetic energy operator. This proofis quite general, since the quoted theorem showed
that all the invariant coefficients were independent of the particular operators considered.
When the » operators are removed in the usual manner by theorem 14, part III, and an

obvious extension of theorem 9, part IV, is applied to the result it follows that
(AB6 w | ngJJ | A'B'0%5w)
= (A] 34,7, | 4) (B B)+ (4] 4) (B $J,7, | B) +2(4| 3.7, 4) (B| 54, B)
+exchange terms, (7)

where it is understood that the summations range over all the variables of the particular
integral in which each of these occurs. The particular form of the third term was obtained
by means of the identity

(ABO*S | PQ| A'B'0W) = (4| P|4') (B| Q| B'), (8)

which can be seen to be valid either from first principles or by the argument of theorem 9,
partI'V, for operators P and @ which commute with the L and § operators and which depend
only on the variables of 4 and B respectively.

If the configurations of B and B’ are the same, then the first terms of (7) contribute the
terms C,inv, (B|B’) to the total integral. Then the coeflicient of the total invariant is
C, Cy, since if inv, does exist it occurs with coeflicient unity in the total invariant, and if it
vanishes, so does the total invariant. The same result must be true if 4 and 4’ have the same
configuration, and it only remains to examine the case when there is one non-coincidence in
each of the pairs 4, 4" and B, B’. Let these non-coincidences be denoted by 4,4’ and b, 4’
respectively. In this case (a | J|a’) occursin (4| ¥ J;| A") with coefficient C, and (5| J | b’)

i

in (B|X J;| B') with coefficient C, and it follows that 2(a|J|a’) (6| J|4’) occurs in the

total integral with coefficient C,Cy. It follows from the definition that this term is just the
total invariant, and hence the theorem has been justified for all cases in which it is not
trivially true by the vanishing of the invariant.
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THEOREM 2. If 4, A’, B and B’ are functions with S! symmetry satisfying the conditions
of theorem 1, then
(ABS!'w |var | A'B'S'w) = (A |var | 4") (B|B')+(B|var |B’) (4| 4'), (9)
and (ABS'w | H| A'B'S'w) = C(4,4") C(B,B’) (ABS'w | inv | A'B'S v)
+(4|var|A") (B|B')+(B|var|B') (4| 4). (10)
Proof. By the usual removal of the w operator and the fact that all contributions to the

integral arising from different S! groupings are contained in the invariant, the result follows.

ComMENT. Two particular results follow from this theorem, the first of which will be used
repeatedly below. Using the fact that (s2S! | var | s2S!) = 0 from table 9, part VII, it follows

from (4) that
(sA42S'sB2S! XSlw | var | s42S'sB?S! YS!w) = (X |var | Y), (11)

where X and Y are similar connected sets of co-detors with S! symmetry, with all their
elementary functions orthogonal to s4 and sB.

Using the fact that  C(sA2S!sBsCS!w, sdsCS!sB*S! v) = —1 (12)
and (sA42S'sBsCS!w | var | sAsCS! sB?S! w) = 2[sAsC | sBsC1° (13)
(these results follow from a detailed examination, but will not be proved here as they are
a direct consequence of a theorem which will be proved in the next part of this series),
and (9), it follows that

(s4%S'sBsCS! XS'w | H | sAsCS!sB*S! YS! w) .

=—C(X, Y) (s428' sBsCS! XS w | inv | s4sCS! sB2S! YS! w)
+2[s4sC|sBsC1°(X|Y). (14)

It may be noted that the following theorem is stated in such general form that it is also
applicable to the functions which might be used for molecules. M will be used to denote

3 My =3 (/).

TueoreMm 3. Let ¥ and ¥’ be a pair of consistent co-detors. Let the configuration of y’
contain once a class of elementary functions y, that is, a connected set of eigangs in the case
ofan atom. Itisimmaterial whether this occursin . Let " be derived from ¥’ by replacing
every element of y in ¢’ by the corresponding elements of another corresponding class z
which does not occur either in ¢ or ¢’. Then if

I' = (M{[$#") = 3 Cypus [58 | #,1-+ other terms, (15)
lmnL
it follows that I"= (M| yy") =3 Crpnrl %1% | %,2]5, (16)
ImnL

and the invariant coefficients are the same for I’ and /”.
Proof. Let  be expressed as a linear combination of serial products

V=2 qJn . : (17)
where the typical j has the form  j = w,(¢;) w,(%,) ....

VoL. 245. A. : 18
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From the construction of ¢ it is apparent that " and ¥” can be expanded in exactly corre-
sponding terms with the same numerical coefficients

V'=240d, V' =244 (18)
Consider from the total integral I’ the contribution given by a particular pair j,, j; and a
particular element M, and consider the corresponding contribution to I” given by the corre-
sponding j,, j{ and the same M,;. These are
(2

i

Wi Wy ... wi(t) ) (19)
Yt .

and the corresponding expression with z replacing y. Ifneither ¢ nor j is equal to £ the con-

tribution to I’ does not involve y, although it may depend on y, and so only gives a con-

tribution to other terms. The corresponding contribution to I” is obviously zero owing to

the orthogonality of the z to all other elementary functions. If7 or;is equal to £, then corre-

sponding terms are contributed, but with z replacing y in the contributions to /”.

Treorem 4. If X and Y are functions such that all the functions of the following integrals
are antisymmetric vector coupled, and if

(M| s3S' Xo, s3S! Yo) = A[s; s, | 515]°
+3 B, [s5 | x,x ]°+2D < [51%, | x,5,]F+ other terms, (20)
then .
(M ||s3S! Xo, s,5,5! Yv)
= AV2[sil510° +V2) Z B, 515 | %517+ (1V2) X Dy, |2.5,]% - (21)

Proof. Ifs3S! and s,5,S! are denoted by Z and W, then simple examination shows

ZWs,s; - (I/N/Q) ZZsm’

and hence all interaction terms of X, ¥ with Z, W must have coefficients (1/,/2) times the
case for Z, Z. If there is perfect coincidence between X and Y, then s,, 5, interactions are as
shown with 4 = 1, but otherwise these are zero. In addition, there are no interactions within
X, Y in the second case since there is a non-coincidence in Z, W,

Tueorem 5. If
(M| 528! Xo, s3S! Yo) = [sy5,] $;5]°+F, (22)

where X and Y are such that all complete functions are antisymmetric vector coupled, then
(M |515,S! Xa, 51558 Y) = [5181 [ 535,14 [5155 | 5511°+3[1+ P(sF, 5, | 55, 55) ] F. (23)

Proof. The theorem follows from an exactly parallel examination of V coeflicients and
5, interactions to the preceding theorem.

ComMEeNT. Using these theorems and those obtained previously all integrals required for
the Na* calculation may be obtained from the simpler basic integrals already evaluated
(part VII). The integrals required fall into three classes: (1) those that vanish in virtue of
more than two non-coincidences in their configurations, (2) those that are treated below, and
(3) those that may be obtained simply from (2) by the application of theorems 3, 4 and 5.
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A complete list of the seventeen co-detors used in the final variational calculations is
given in § 7. For convenience, in deriving the formulas below, the notation of that section
will be used, (x/y) denoting a function obtained from the ‘root function’,

sA?S1sB2S1 p A58 w,

by the replacement of x by y and (x,/y, || ,/y,) denoting the usual variational matrix element
between the functions (x,/y,) and (¥,/y,). In the case where an x2 replaces a pA? there are
three possible methods of coupling corresponding to #281, x?P® and x2D!, and these coupling
symbols have been included. For example, s42S1sB2S!pA*P?pB?P3S'w is denoted by
(pA2?/pB2P3). The ‘root function’ itself is simply denoted by (/).

The derivations of the formulas for the thirty-six integrals between the eight co-detors
(/); (sBJsC), (pA[pB), (pA2[pB?SY), (pA*|pB°P?), (pA*[pB*DY), (pA?|d4*SY), (pA?|dAPP)
and (pA?/dA?D?'), and of (sB/sC||sA/sC) and (sBpA[sCpB ||sAsC), are discussed below.

(1) For the integral (/||/) it is only necessary to evaluate the variant contribution since
by theorem 22, part VI, the invariant contribution has the coefficient unity, and by the
relation (11) and table 9, part VII, this is given by (/| var |/) = —1-2[ pAdpA | pApA]>.

(2) The invariant coefficient for the integral (pA/pB||/) is C(pASP2pBS!, pASS!) by
theorem 1, and the variant contributionis (pA’P2pBS'w | var | pA5S') by the relation (11).
Hence both the invariant coeflicient and the variant term may be obtained from table 11,

part VII.
(3) For the integral (pA/pB ||pA/pB) it is only necessary to evaluate the variant since the
invariant has coeflicient unity, and by the relation (11), and table 10, part VII, this is

(pA[pB | var | pA[pB)
= —0-8[ pApA | pApA12—0-4[ pApA | pBpB1?+ 5[ pApB | pApB1°— 0-4[ pApB | pApBI2.
‘ (24)

(4) The invariant coeflicient for the integral (pA%/pB2S!||/) is C(pA*S! pB2S! w, pASST)
by theorem 1, and the variant contributionis (p4*S! pB?S! w | var | pA®S!) by therelation (11).
Thus both C and var may be obtained from table 13, part VII.

Formulas for (pA2[pB*P|[]), (pA2/pB*D /)
and (pA2[dA?SY|[]), (pd?dA?P?|[), (pA2[dA*D[)

may be obtained in an exactly similar manner.
(5) The invariant coeflicient for the integral (pA42/pB*S!||pA/pB) is

C(pA*S! pB?Stw, pASP?pBS! 0)

by theorem 1 and the variant is (pA*S!pB2Stw|var | pA5P2pBS!w) by the relation (11)
Both C and var may be obtained from table 11, part VII.

Formulas for (pA2/pB2P3||pAJpB), (pA%/pB*D' | pA[pB)
and (pA2[dAS) | pA[pB), (pA%/dA’P ||pAIpB), (pA2|dADV|pA[pB)

may be obtained in an exactly similar manner.
18-2
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(6) For the integral (pA2/pB2S! || pA%/pB2S') it is only necessary to evaluate the variant
since the coefficient of the invariant is unity, and by the relation (11) this is

(pA*S' pB?S' w | var | pA*S! pB2S! v)

which may be obtained from table 10, part VII.

Formulas for  (pA2/pB2?P3 || pA%/pB?P3), (pA%/pB?D!| pA%/pB?D!)
and (pA?/dA2S! || pA?[/dA?SY), (pA?/dA?P3 || pA?/dA?P3), (pA?[dA%D!| pA?/dA2D?)
may be obtained in an exacﬂy similar manner.

(7) The invariant coefficient for the integral (pA42/pB2P3 | pA?%/pB2S!) vanishes by
theorem 1 and the result of table 12, part VII. By the relation (11) the variant is

(pA*P3 pB?P3S w || pA*S! pB2S! ),

and this is given in the same table.

Formulas for  (pA%/pB2D! ||pA%[pB?P3), (pA?/pB?D!| pA?/pB?S'),

(pA2dA?DY || pA2|dAP?),  (pA?|dA*D! || pA?|dA?SY), (pA2|dA*P?||pA?/dASY)
may be obtained in an exactly similar manner.
8) The integral (pA%/dA2S! ||pA2/pB?S?!) is, by trivial applications of the general reduc-
g . PP g
tion theory when there are two non-coincidences in one part, equal to
(pA*S1dA?S w || pA4S pB?S! )

given in table 13, part VII.

The formulas for

(pA2/dAPP?||pA2[pB2P%)  and  (pA?/dAD'| pA?/pB*DY)

are obtained in an exactly similar manner.

(9) Theintegral (pA?%/pB2P3 || pA?/dA?S!) vanishes by theorem 14, part I1I, and theorem 9,
part IV. Likewise the five other similar integrals in which the couplings differ.

(10) The formulas for (sB/sC||s4/sC) and (sBpA|sCpB || sA/sC) follow at once from the
relation (14) and the results of tables 9 and 11, part VII.

The use of theorems 3, 4 and 5 to obtain all the other integrals required for the Na*
calculation from the integrals considered above is illustrated by the calculation of (sB/sC|| /),
(sBsC||sB/sC) and (sB/sD | sB/sC). The formula for (sB/sC| /) follows immediately from
that for (/]|/) by theorem 4. The formula for (sB/sC| sB/sC) follows immediately from
that for (/||/) by theorem 5, and that for (sB/sD||sB/sC) from that for (sB/sC| sB/sC) by
theorem 3.

4. A USEFUL NUMERICAL METHOD FOR THE TREATMENT
OF THE TWO-ELECTRON INTEGRALS

A systematic method for evaluating the two-electron integrals has already been developed
and is described in part IT,§ 4. It was, however, thought interesting to examine the advan-
tages of an alternative method, conveniently described as non-dimensional, by using it


http://rsta.royalsocietypublishing.org/

A\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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for the present calculations. The advantage proved to be much greater than was apparent
from a preliminary examination, and it appears advisable to use this method for future
calculations.

If the radial factors of the elementary orthonormal functions ¢ are denoted by ¢, then

¢ =2 Xprisemo, (25)

and the formula for [¢,4, | ¢,¢,]* follows by substitution from (20). It is

(6,9, | 48" = % Tgrts 3 T99e(nyy ny)E (s ), (26)
q
where (n,,n,)% (a,,%,) = [r e~ | e ]r
and Y—Zbﬂbs —_— %va’sts’ . (27)
subject to n+n; = n,,

The modification, which will be called non-dimensional, consists of defining

J(n,m)t (w,0) = (m, m)* (w, 0) [ (s 0)° (s )} H{(m m)° (9, 0}] (28)
and Tgbs = Tt [{(n,,n,)° (a,,a,)}.
It is then apparent that
[¢r¢s l ¢t¢u]L - % Tfr%% Tfﬁbu J(”p’ nq)L ((Zp, aq)’ \29)

and the two-electron integrals were calculated from the J(n,m) (u,v) by this relation.
The J(n,m)E (u,v) can be shown to satisfy

J(n,m)* (pu, pv) = J(n, m)* (u,0), (30)
so that for fixed n, m, L the J integrals depend only on the ratio z/v. Obviously
J(n,n)° (u,u) = 1. (31)

Explicit formulas for the J integrals were obtained from their definitions and they were
calculated from these, the calculation being probably rather simpler than that of the
(n,m)L (u,v). The advantage of using the non-dimensional J(n,m)L (u,v) integrals was
that for a given L value they were all of the same order of magnitude (every J value lay in
the range 1 to about 4%;), and this both expedited the matrix contractions (see equation (29))
and greatly reduced the chances of error. Since the matrix contractions constituted a
major part of the numerical work of the wave-function calculations this was a very important
factor. Itisinteresting to note that it was possible to keep the J tables much more compact
than would otherwise have been the case, by using the fact that it was found satisfactory
to work with sets of &’s (see equation (25)) and hence of the «’s and v’s, which were in the
ratio of small integers. The J values used thus corresponded to four small integral arguments

and were tabulated accordingly.
18-3
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5. THE SOLUTION OF THE RITZ EQUATIONS; THE ROOT FUNGTION
A method for the solution of the Ritz equations

ZHrsYs:EYr’ (32)

using as a variational function a linear combination, XY,®,, of co-detors, ®@,, has been
described in part II, § 5. The method is applicable when

Hrr_Hll>Hrs (7'=|:.S‘), (33)
and the rapidity of convergence starting with a solution ¥, = (1,0, 0, ...) will be great if
Y,>Y, (r+1). (34)

The conditions (33) and (34) can generally befulfilled by choosing the co-detor @, such that
it gives an approximate minimum to

E\= (0| H|D,), (35)

and @, is then called a root function and £ is called its energy. In practice the configuration
of @, was taken to correspond to no electronic interaction and the elementary radial func-
tions chosen to obtain a minimum of (35).

When a suitable root function had been obtained the matrix elements /,, of equation (32)
were calculated. Theoretically, at any stage of the calculation all independent co-detors
®, with the same symmetry as ®; which could be constructed from the elementary radial
functions at that stage should have been included in equation (32). In practice, however,
large numbers of the ®’s were omitted from these equations since it was often the case that
their inclusion gave a negligible contribution to the energy, and on the energy criterion
they were excluded. It can be shown that generally a fairly good estimate of the extra con-
tribution to the energy brought about by the inclusion of @, is

—(H,,)*/(H,,— Hy,), (36)

rr

and in practice this was evaluated first, and if it was very small ®, was not included in the
solution of the equations. The Ritz equations (32) were solved using the method of part I1,
§5. When (as sometimes happened) not both H,,— H,, and H,— H,, were greater than a
few times | H,, |, for some pair (r,s), the procedure is very slowly convergent or even diver-
gent. In such cases the procedure was modified by determining formulas for the 0Y’s by
the solution of the small sets of simultaneous equations given by retaining only the larger
H, coefficients followed by some empirical adjustment when necessary. With this modifica-
tion the procedure was rapidly convergent.

6. THE STRETCHING TRANSFORMATION

In the absence of electronic interaction the total wave function reduces to a single co-detor
whose elementary functions only depend on the nuclear charge as a scale factor. This
suggested using the same set of primary functions (with scale factors in the ratio 9:10:11) for
the F~, Ne and Na* calculations respectively. This method of choice was found to be satis-
factory and, because of the following theorem, made possible a great saving of labour.
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THEOREM. If the primary elementary functions are of the form rse %" (s =1,2,...),
where £ is a constant, and orthonormal functions ¢, be constructed from the functions
r"s e~ %7, then the normalized multiples, ¢, of ¢’ (kr),

(r) = ¢’ (kn) /(' (kr) | 4" (k) (37)

are orthonormal combinations of the primary functions. The one- and two-electron in-
tegrals of ¢ are immediately obtained from those of ¢’ by the following relations:

(4| 8] = [ | 2],
(6| V18] = k8| V2],
(65| K| ] = K¢ | K| 1],
(48,1 ub.1" = k8,61 | BuBu1"

¢ is said to be ‘stretched’ from ¢’ by a stretching (or scale) factor £.

(38)

ComuMeNT. It follows at once that the whole wave-function calculation may be carried
out in terms of the integrals of the ¢’, and that the Ritz variational equation (part II, § 5)

may be written
S{ZI(KZ) K=V ]+ M} Y, = (EJR) Y, (39)

where K’, V' and M’ are the matrix elements (see § 2) of the co-detors constructed from the
orthonormal functions ¢’. Obviously the calculation in terms of the ¢’ involves no more
labour than the direct calculation in terms of ¢. The advantage of using the ‘un-stretched’
primary functions 7™ e~ is that since it is found satisfactory to use the same functions with
different values of £ for different atoms, only one set of integrals (those corresponding to
s e~%") need be evaluated for these atoms.

This ‘stretching’ procedure was used in the present calculations. A set of (n,, «,) values
(0,5), (1,1), ..., was taken and the £ values £, 12 and 4 for I, Ne and Na* respectively,
were used. With these values of the stretching factor the first exponential corresponds to
a 1s function for a single electron on each of the respective nuclei. Though the same (n, «,)
values were used it was not found desirable to use the same orthonormal combinations
for all three calculations. The same orthonormal functions were used for F- and Ne,
and those for Na* were related to these by a simple linear transformation. This point will
be discussed further in § 7.

7. THE DIFFERENT NUMERICAL TRIALS AND THE FINAL
WAVE-FUNCTION CALCULATION

At the outset of the wave-function calculations it was decided to concentrate on the
calculation for the sodium ion, Na*, since this was the only ion for which the ground state
energy was available (Fock & Petraschen 1934), and thus the only one which could be
readily compared with previous calculations.

As a first step to the ground-state wave function for Na* a number of trials for those
radial functions which would give a satisfactory root function, s42S! sB2S! p4°S! v (see § 5),
were made. The first three trials will not be described in any details as they did not give
satisfactory root functions.
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TriAL oNE. The radial parts of the elementary eigangs were chosen to be hydrogen-like
combinations of e, re=37, e=%, r2e~%, re~?%, e~% (with a stretching factor £ = I}, see § 6)
together with other orthonormal combinations necessary for the completeness of the set.
With these functions the solution of the Ritz equations by the method of numerical successive
approximations (see § 5) was only very slowly convergent. To obtain a solution new com-
binations of the radial functions were chosen for which the convergence to the solution of
the equations was more rapid. Though the new combinations gave an estimated value of
the ground state energy near the value given by Fock & Petraschen it was decided not to
proceed with this choice of radial functions. This was because it was found that any increase
in the number of such functions would entail a very large amount of work and it was con-
jectured that the same value of the energy might be obtained with fewer functions, which
would lighten both the work of improvements and the adaptation to ions with more

electrons.

Triar Two. For this trial the radial parts of the elementary eigangs were chosen to be
orthonormal linear combinations of e~%, e~!%, re~?%, re~% and r2e~% (with a stretching
factor £ = L1). The root-function energy was higher than the Fock & Petraschen value,
and the difference between them was rather large. The inclusion of other co-detors, @,
formed from the elementary eigangs did not compensate for this. For the reason given in
trial one it was thought better to make a fresh choice of radial functions rather than continue
with the trial.

TrIAL THREE. A number of different orthonormal linear combinations of €127, re~2"
and re~%", were taken as the radial parts of the elementary eigangs and the corresponding
root-function energies evaluated. This involved much less work than the preceding trials.
The lowest root-function energy was higher than the Fock-Petraschen value and the differ-
ence between them was rather large. The inclusion of other co-detors was dropped in favour
of a fresh trial.

TriaL Four. For this trial some radial functions obtained from Brown’s work on the
Hartree wave function for Ne were used. Brown (1934) fitted the Hartree functions by
linear combinations of functions approximating to e %%, r e =#", r e=2#", where £ is a constant,
and these functions with £ = 4l were used in this trial. Linear combinations sa, ab, etc.,

of the form ‘ S Clnya) rre-ar (40)

with the numerical values of the coeflicients C(z, «) given in table 1 were used as the radial
functions for the orthonormal eigangs s4, sB, sC, p4 and pB. The coefficients were chosen to
satisfy the orthonormality condition exactly and so that s4, sB and p4 approximated to the
stretched Brown functions. Using the elementary eigangs sA4, sB and pA4 with radial factors
sa, sb and pa respectively, the root-function energy was calculated as follows: The one-
electron integrals by the method described in part II, § 3, and the two-electron integrals
by the method described in §4. The root-function energy E, = (®,|H|®,), where
@, = 542581 sB?S! pA®S' w, was then calculated by direct substitution for the one- and two-
electron integrals in the formula for this integral obtained in § 3. The result was —161-015
atomic units of energy, and since the Fock-Petraschen result was —161-8 atomic units of
energy, the root function was considered satisfactory. Having obtained a reasonably good
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TaBLE 1. THE COEFFICIENTS C(n, )

n, o sa sb s¢ sd se
0,5 22-3606798 —4-98395647 —9-431006505 —22-037941 11-82407477
1,1 — 0-821993820 —1-584902631 1-577072790 —11-79318802
1,2 — 2-465981461 10-48417666 —28-:3959101 53-7275742
1,3 — — —_ 73-5469757 —76-4568205
2,1 —— —_— - — 2-813695776
n, o pa pb pe pd da
1,1 0-656024532  —1-60168918 1-4694271 3-82862908 0-0
1,2 328012266 9-22527187 —24-198840 122049338 0-0
1,3 — — 54-952045 —165-936268 0-0
2,2 — — e 67-0473215 4-77027835

)

root function the calculation was extended to include eigangs sC and pB with radial factors
sc and pb respectively. The Ritz equations, in which were included other co-detors with S!
symmetry which could be constructed from the eigangs s4, sB, sC, pA and pB, were solved.
The method of solution was that described in part II, § 5, with the modification indicated
in §5. The matrix elements H,; were evaluated in the same manner as the root-function
energy, H,,, using the formulas obtained in § 3 and other formulas for integrals involving
co-detors which were not included in the final calculation. The energy, E, was still higher
than the value given by Fock & Petraschen and it was decided to extend the calculation.
To the original primary functions were added the functions re~%, 72e~7, ¥2e~% and radial
factors sd, se, pe, pd, da for corresponding eigangs sD, sE, pC, pD, dA (orthogonal to the
previous eigangs) were constructed. The radial factors sd, se, etc., are given in table 1. The
calculation was then repeated including the new eigangs. The final value of the total energy;
E, was —161-803 atomic units of energy and the corresponding (un-normalized) solution
of the Ritz equations of the form

Y =@, +ad®,+ b0, +cD,+...,
where @, is the root function s425! sB2S! pA°S! w and
@, = 54251 sBsCS! pA®S' v,

a

@, = sA?S! sB2S! pA5P2BS! 0,

and a~0-23, 5~ 0-09 and a,b>¢,d, .... It was decided to change the radial factors of sB
and sC, and pA and pB, the aim being to include the energy contributions for ®, and @, in
the root function. It was hoped that this would reduce the number of co-detors, ®,, required
to obtain a good approximation to the accurate energy, and thus considerably reduce the
number of matrix elements, H,, to be calculated. New radial factors s&’, s¢’, pa’ and pb’

rs?
were obtained by the linear transformations of the original factors sb, sc, pa and pb:

sb" = J(1—u?) sb+usc, }
s¢' = —usb+./(1—u?) sc, (41)
pa’ = J(1—2%) pa-+vpb, }
pb’ = —vpa+ /(1 —0?) pb, (42)

where u = 0-1579905 and v = 0-0349786. The values of ¥ and v were determined to minimize
the root-function energy. Actually it can be shown that a good choice of these is given by
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J2u = a and /6v = b, and they were determined from these equations. The one- and two-
electron integrals for the new eigangs (i.e. the eigangs with radial factors sa, sb’, s, sd, etc.)
were calculated from the integrals of the original eigangs by a simple transformation, thus
saving a considerable amount of labour. The matrix elements, /,, for the new eigangs were
calculated and the Ritz equations solved. The final value for the total energy, £, was about
0-08, lower than the Fock-Petraschen result and the corresponding wave function is that
given in table 2. The root function and total energy are also given in this table. The table
gives the coefficients Y, occurring in the expansion of the un-normalized wave function,
2Y,®,.1/3 Y ?is given (to six significant figures to provide a check that errors have not been
r

made in transcription), at the foot of the column Y,. The seventeen co-detors, @,, used in
this final Na* calculation are shown, using the following notations, in the first column.
Every co-detor is denoted by a symbol (x/y), the co-detor corresponding to (x/y) being
determined by the following relations:

(/) = the root function = s425!sB2S! pA%S! v,

where o is the antisymmetry operator necessary to make the function preceding it nor-
malized and antisymmetric:
(sBfx) = sA2S! sBxS! pA5S! v,
and similarly for (s4/x), (pA[x) = sA2S1sB2S! pA5P2 xS! v,
: (pA2?/x%0) = sA?S'sB?S! pA*0pB*S! w,
where ¢ = S1, P3 or D!,
(sBpA/sCpB) = sA?S! sBsCS! pA°P? pBS! w.

TABLE 2. THE COEFFICIENTS Y, FOR THE UN-NORMALIZED WAVE FUNGTIONS

Na+ Ne F-

sA281sB281 p ASSIS! 1-0 1-0 1-0
(sB/[sC) 0-018 0-162 0-067
(sB/sD) —0-112 —0-094 —0-068
(sB/sE) —0-013 —0-001 0-017
(sA4/sC) 0-033 0-037 0-043
(s4/sD) 0-034 0-036 0-038
(s4/sE) —0-006 —0-006 —0-007
(pA/pB) 0-057 ~0-075 —0-285
(pA[pC) 0-022 0-070 0-119
(pA[pD) —0-042 —0-004 0-038
(pA?[pB3SY) 0-044 0-044 0-038
(pA%[pB?P?) 0-043 0-062 0-034
(pA?[pB?D?Y) —0-061 —0-069 —0-052
(pA?[dA%SY) —0-038 —0-040 —0-042
(pA2[dA*P?) —0-052 —0-054 —0-057
(pA?/dA*D?) 0-041 0-043 0-045
(sBpA/sCpB) —0-054 —-0-065 —0-071
1/3 Y2 0-964259 0-935057 0-887345

r .
root-function energy —161-2236 —128-1430 —98-9174

(atomic units)

total energy —161-8784 —128-6920 —99-5279
(atomic units) v

It was considered very interesting to examine if satisfactory wave functions for F~ and

Ne could be obtained using the radial functions (orbitals) sa, sb’, s¢’, etc., used in the final

Na* calculation, with stretching factors £ and 12 respectively, (see § 6). Using the method
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of § 6 the calculations were relatively short. However, these orbitals were not found satis-
factory because some of the ¥’s in the expansions > Y, ®,, for the wave functions were rather
large and a transformation, of the type used for the Na* calculation, to reduce these large
Y’s was considered. Fortunately the orbitals sa, sb, sc, etc., used for the Na* calculation in
trial four (i.e. those given in table 1), were found to satisfy this requirement, and it was
therefore not necessary to perform the transformation explicitly. Here again, the calcula-
tions were performed using the method of § 6.

The values of ¥, occurring in the expansions, XY,®,, for the resulting wave functions
using these orbitals are given in table 2. The root function and total energies are also given.
In this table it should be noted that the elementary eigangs s4, sB, sC, ..., from which the
co-detors @, are constructed have the unstretched orbitals sa, sb’, s¢’, sd, se, pa’, pb’, pe, pd
and da for the Na* wave function and sa, sb, sc, sd, se, pa, pb, pc, pd and da for the F~ and Ne
calculation. Because no fresh integrals had to be calculated for the F~ and Ne calculations
the labour required for these was only a fraction of that required for the Na* calculation.

The experimental energy for Na*t is —162-126 a.u. (see Morse, Young & Haurwitz 1935).
Most of the discrepancy between the experimental and calculated values will be due to the
spin-orbit interaction, which would require a long calculation to evaluate and so it is not
possible to use the experimental energy as a criterion of accuracy of the wave function.

8. DiscussioN

The chief significance of these calculations is that they are the first calculations by a
convergent method for systems containing ten electrons. The previous most complicated
case examined by such a method was the beryllium atom with four electrons. The experience
gained during the course of the calculations suggests that the method is practicable for a
number of systems appreciably more complicated.

It is a very valuable characteristic of the method that a large amount of the data accumu-
lated in the present calculations will be of use for future calculations. For example, all the
formulas for the Schrédinger integrals are of permanent value since they may be used in any
other calculations for Ne-like atoms with different orbitals. Actually they have a wider
application than this owing to the occurrence of closed shells, s2S!, p8S1, in the lower states
of more complicated atoms. The evaluation of the Schrédinger integrals for these states will
be considerably simplified by use of the integrals already calculated. Further, the Jintegrals
already calculated will probably be used in any future calculation by the present method
in which integral values of z and «, in the unstretched primary functions, 7" e~*", are used.

The previous most accurate wave function for which the calculated energy is available
is the wave function for Na* calculated by the Hartree-Fock method by Fock & Petraschen
(1934). However, this cannot reliably be compared with the present result since the arith-
metical accuracy, apart from the fundamental theoretical approximation, is of a completely
lower order. In that calculation the kinetic energy contribution to the total energy is twice
the latter in magnitude and is in effect the integral of numerically differentiated functions,
and since the numerical functions were only obtained to four significant figures the possible
arithmetical error appears larger than the differences concerned in such comparisons. The
actual integrals used in the present calculation were evaluated to seven significant figures
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from explicit formulas. In addition, Hartree & Hartree (1948) have found small errors in
this previous calculation but do not give a corrected energy. In view of these uncertainties
it is difficult to estimate which digits of the Fock-Petraschen result of —161-8 are really
established by their calculation, although it appears that the present result of —161-88
is established to all these digits. The use of this previous result as a guide in the various trials
reported above should be considered as a best expedient in the absence of other data, and
it is the opinion of the authors that the results do suggest that the true energy for the Fock-
Petraschen calculation should be somewhat higher in the absolute sense. On the other hand,
these trials should not be considered just as attempts to improve the particular energies
and wave functions concerned, they have provided very valuable experience in the
organization of such converging calculations, and would make any repetition or extension
much briefer. This is probably of more permanent value than the particular data. In view
of the above considerations and the fact that the present calculations for the first time
include electronic correlation for Na*, Ne, F~, it appears that the wave functions given in
table 2 are the most accurate available for these ions.

The wave functions obtained correspond to a variational calculation with a finite number
of terms, but the process used is such that it can be extended without any fresh type of analysis
to any number of terms when it will converge to the accurate solution of the many electron
Schrodinger equation.
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